Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(14): 6939-6948, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38511623

RESUMEN

Ionizable lipid nanoparticles (LNPs) have emerged as a powerful tool for the intracellular delivery of nucleic acids. Following the recent success of LNP-based siRNA therapeutics and mRNA vaccines, the use of ionizable lipids for nucleic acid delivery has tremendously increased. Here, we introduce a flash nanoprecipitation (FNP) approach using the confined impingement (CIJ) mixer to stably self-assemble ionizable LNPs. To validate this approach, we employed three clinically relevant LNP formulations containing SM102, ALC0315, and DLin-MC3-DMA as ionizable lipids. FNP-assembled LNPs showed >95% encapsulation efficiency of mRNA and siRNA payloads and particle sizes below 150 nm. SM102 or ALC0315 LNPs demonstrated efficient delivery of mRNA into immune cells in vitro and to lymphoid organs in vivo, whereas Dlin-MC3-DMA LNPs allowed effective intracellular siRNA delivery with great functional ability. The FNP technique could economically produce LNPs in smaller volumes that are highly suitable for the discovery phase.


Asunto(s)
Lípidos , Nanopartículas , Liposomas , ARN Interferente Pequeño/genética , ARN Mensajero/genética
2.
Discov Nano ; 19(1): 4, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175336

RESUMEN

Acetalated dextran (Ac-Dex) nanoparticles are currently of immense interest due to their sharp pH-responsive nature and high biodegradability. Ac-Dex nanoparticles are often formulated through single- or double-emulsion methods utilizing polyvinyl alcohol as the stabilizer. The emulsion methods utilize toxic organic solvents such as dichloromethane or chloroform and require multi-step processing to form stable Ac-Dex nanoparticles. Here, we introduce a simple flash nanoprecipitation (FNP) approach that utilizes a confined impinging jet mixer and a non-toxic solvent, ethanol, to form Ac-Dex nanoparticles rapidly. Ac-Dex nanoparticles were stabilized using nonionic PEGylated surfactants, D-α-Tocopherol polyethylene glycol succinate (TPGS), or Pluronic (F-127). Ac-Dex nanoparticles formed using FNP were highly monodisperse and stably encapsulated a wide range of payloads, including hydrophobic, hydrophilic, and macromolecules. When lyophilized, Ac-Dex TPGS nanoparticles remained stable for at least one year with greater than 80% payload retention. Ac-Dex nanoparticles were non-toxic to cells and achieved intracellular release of payloads into the cytoplasm. In vivo studies demonstrated a predominant biodistribution of Ac-Dex TPGS nanoparticles in the liver, lungs, and spleen after intravenous administration. Taken together, the FNP technique allows easy fabrication and loading of Ac-Dex nanoparticles that can precisely release payloads into intracellular environments for diverse therapeutic applications. pH-responsive Acetalateddextran can be formulated using nonionic surfactants, such as TPGS or F-127, for intracellular release of payloads. Highly monodisperse and stable nanoparticles can be created through the simple, scalable flash nanoprecipitation technique, which utilizes a confined impingement jet mixer.

3.
Elife ; 122023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37877801

RESUMEN

Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.


Asunto(s)
Mycobacterium tuberculosis , Nanopartículas , Humanos , Animales , Ratones , Diferenciación Celular , Vacunación , Ácidos Micólicos
4.
Lung Cancer ; 181: 107258, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245409

RESUMEN

OBJECTIVES: A cure for cancer is out of reach for most patients due to chemoresistance. Cancer-associated fibroblasts (CAFs) play a vital role in cancer chemoresistance, but detailed understanding of the process particularly in chemoresistant lung cancer is lacking. In this study, we investigated programmed death-ligand 1 (PDL-1) as a potential biomarker for CAF-induced chemoresistance and evaluated its role and the underlying mechanisms of chemoresistance in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: A systemic search of gene expression profiles of multiple tissues in NSCLC was carried out to determine the expression intensities of traditional fibroblast biomarkers and CAF-secreted protumorigenic cytokines. PDL-1 expression in CAFs was analyzed by ELISA, Western blotting, and flow cytometry. Human cytokine array was used to identify specific cytokines secreted from CAFs. Role of PDL-1 in NSCLC chemoresistance was assessed using CRISPR/Cas9 knockdown and various functional assays including MTT, cell invasion, sphere formation, and cell apoptosis. In vivo experiments were conducted using a co-implantation xenograft mouse model with live cell imaging and immunohistochemistry. RESULTS: We demonstrated that chemotherapy-stimulated CAFs promoted tumorigenic and stem cell-like properties of NSCLC cells, which contribute to their chemoresistance. Subsequently, we revealed that PDL-1 expression is upregulated in chemotherapy-treated CAFs and is associated with poor prognosis. Silencing PDL-1 expression suppressed CAFs' ability to promote stem cell-like properties and invasiveness of lung cancer cells, favoring chemoresistance. Mechanistically, an upregulation of PDL-1 in chemotherapy-treated CAFs led to an increase in hepatocyte growth factor (HGF) secretion, which stimulates cancer progression, cell invasion, and stemness of lung cancer cells, while inhibiting apoptosis. CONCLUSION: Our results show that PDL-1-positive CAFs modulate stem cell-like properties of NSCLC cells by secreting elevated HGF, thereby promoting chemoresistance. Our finding supports PDL-1 in CAFs as a chemotherapy response biomarker and as a drug delivery and therapeutic target for chemoresistant NSCLC.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Fibroblastos Asociados al Cáncer/metabolismo , Resistencia a Antineoplásicos , Fibroblastos , Citocinas/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular
5.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-36945395

RESUMEN

Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.

6.
Nano Res ; 16(5): 6974-6990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36685637

RESUMEN

Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.

7.
ACS Chem Biol ; 17(9): 2559-2571, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36028220

RESUMEN

Adjuvanted nanocarrier-based vaccines hold substantial potential for applications in novel early-life immunization strategies. Here, via mouse and human age-specific in vitro modeling, we identified the combination of a small-molecule STING agonist (2'3'-cyclic GMP-AMP, cGAMP) and a TLR7/8 agonist (CL075) to drive the synergistic activation of neonatal dendritic cells and precision CD4 T-helper (Th) cell expansion via the IL-12/IFNγ axis. We further demonstrate that the vaccination of neonatal mice with quadrivalent influenza recombinant hemagglutinin (rHA) and an admixture of two polymersome (PS) nanocarriers separately encapsulating cGAMP (cGAMP-PS) and CL075 (CL075-PS) drove robust Th1 bias, high frequency of T follicular helper (TFH) cells, and germinal center (GC) B cells along with the IgG2c-skewed humoral response in vivo. Dual-loaded cGAMP/CL075-PSs did not outperform admixed cGAMP-PS and CL075-PS in vivo. These data validate an optimally designed adjuvantation system via age-selected small-molecule synergy and a multicomponent nanocarrier formulation as an effective approach to induce type 1 immune responses in early life.


Asunto(s)
Hemaglutininas , Receptor Toll-Like 7 , Adyuvantes Inmunológicos/farmacología , Animales , Humanos , Inmunización , Interleucina-12 , Ratones , Vacunación
8.
iScience ; 25(7): 104555, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35769884

RESUMEN

Plasmid DNA (pDNA) transfection is advantageous for gene therapies requiring larger genetic elements, including "all-in-one" CRISPR/Cas9 plasmids, but is limited by toxicity as well as poor intracellular release and transfection efficiency in immune cell populations. Here, we developed a synthetic non-viral gene delivery platform composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers linked to a cationic dendritic peptide (DP) via a reduceable bond, PEG-b-PPS-ss-DP (PPDP). A library of self-assembling PPDP polymers was synthesized and screened to identify optimal constructs capable of transfecting macrophages with small (pCMV-DsRed, 4.6 kb) and large (pL-CRISPR.EFS.tRFP, 11.7 kb) plasmids. The optimized PPDP construct transfected macrophages, fibroblasts, dendritic cells, and T cells more efficiently and with less toxicity than a commercial Lipo2K reagent, regardless of pDNA size and under standard culture conditions in the presence of serum. The PPDP technology described herein is a stimuli-responsive polymeric nanovector that can be leveraged to meet diverse challenges in gene delivery.

9.
Cancer Cell ; 40(3): 255-276, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35148814

RESUMEN

Nanomaterials and targeted drug delivery vehicles improve the therapeutic index of drugs and permit greater control over their pharmacokinetics, biodistribution, and bioavailability. Here, nanotechnologies applied to cancer immunotherapy are discussed with a focus on current and next generation self-assembling drug delivery systems composed of lipids and/or polymers. Topics covered include the fundamental design, suitability, and inherent properties of nanomaterials that induce anti-tumor immune responses and support anti-cancer vaccination. Established active and passive targeting strategies as well as newer "indirect" methods are presented together with insights into how nanocarrier structure and surface chemistry can be leveraged for controlled delivery to the tumor microenvironment while minimizing off-target effects.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Inmunoterapia , Nanopartículas/química , Nanoestructuras/química , Neoplasias/terapia , Distribución Tisular , Microambiente Tumoral
10.
Nat Nanotechnol ; 17(3): 319-330, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35039683

RESUMEN

Standard oral rapamycin (that is, Rapamune) administration is plagued by poor bioavailability and broad biodistribution. Thus, this pleotropic mammalian target of rapamycin (mTOR) inhibitor has a narrow therapeutic window and numerous side effects and provides inadequate protection to transplanted cells and tissues. Furthermore, the hydrophobicity of rapamycin limits its use in parenteral formulations. Here, we demonstrate that subcutaneous delivery via poly(ethylene glycol)-b-poly(propylene sulfide) polymersome nanocarriers significantly alters rapamycin's cellular biodistribution to repurpose its mechanism of action for tolerance, instead of immunosuppression, and minimize side effects. While oral rapamycin inhibits T cell proliferation directly, subcutaneously administered rapamycin-loaded polymersomes modulate antigen presenting cells in lieu of T cells, significantly improving maintenance of normoglycemia in a clinically relevant, major histocompatibility complex-mismatched, allogeneic, intraportal (liver) islet transplantation model. These results demonstrate the ability of a rationally designed nanocarrier to re-engineer the immunosuppressive mechanism of a drug by controlling cellular biodistribution.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trasplante de Islotes Pancreáticos , Inmunosupresores/farmacología , Sirolimus/farmacología , Distribución Tisular
11.
Adv Nanobiomed Res ; 1(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34870281

RESUMEN

Self-assembling filomicelles (FM) are of great interest to nanomedicine due to their structural flexibility, extensive systemic circulation time, and amenability to unique "cylinder-to-sphere" morphological transitions. However, current fabrication techniques for FM self-assembly are highly variable and difficult to scale. Here, we demonstrate that tetrablock copolymers composed of poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) diblocks linked by a pi-stacking perylene bisimide (PBI) moiety permit rapid, scalable, and facile assembly of FM via the flash nanoprecipitation (FNP) method. Co-assembling the tetrablocks and PEG-b-PPS diblocks at different molar ratios resulted in mixed PBI-containing FM (mPBI-FM) with tunable length and flexibility. The flexibility of mPBI-FM can be optimized to decrease uptake by macrophages in vivo, leading to increased circulation time versus (-)PBI-FM without PBI tetrablocks after intravenous administration in mice. While PEG-b-PPS diblocks form FM within a narrow range of hydrophilic weight fractions, incorporation of pi-stacking PBI groups expanded this range to increase favorability of FM assembly. Furthermore, the aggregation-dependent fluorescence of PBI shifted during oxidation-induced "cylinder-to-sphere" transitions of mPBI-FM into micelles, resulting in a distinct emission wavelength for filamentous versus spherical nanostructures. Thus, incorporation of pi-stacking allows for rapid, scalable assembly of FM with tunable flexibility and stability for theranostic and nanomedicine applications.

12.
ACS Biomater Sci Eng ; 7(12): 5666-5677, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34813288

RESUMEN

Systemic lupus erythematosus (SLE) causes damaging inflammation in multiple organs via the accumulation of immune complexes. These complexes activate plasmacytoid dendritic cells (pDCs) via toll-like receptors (TLRs), contributing to disease pathogenesis by driving the secretion of inflammatory type I interferons (IFNs). Antimalarial drugs, such as chloroquine (CQ), are TLR antagonists used to alleviate inflammation in SLE. However, they require ∼3 months of continuous use before achieving therapeutic efficacy and can accumulate in the retinal pigment epithelium with chronic use, resulting in retinopathy. We hypothesized that poly(ethylene glycol)-b-poly(propylene sulfide) filamentous nanocarriers, filomicelles (FMs), could directly deliver CQ to pDCs via passive, morphology-based targeting to concentrate drug delivery to specific immune cells, improve drug activity by increased inhibition of type I IFN, and enhance efficacy per dose. Healthy human peripheral blood mononuclear cells were treated with soluble CQ or CQ-loaded FMs, stimulated with TLR agonists or SLE patient sera, and type I IFN secretion was quantified via multi-subtype IFN-α ELISA and MX1 gene expression using real-time reverse transcription-quantitative polymerase chain reaction. Our results showed that 50 µg CQ/mg FM decreased MX1 expression and IFN-α production after TLR activation with either synthetic nucleic acid agonists or immune complex-rich sera from SLE patients. Cellular uptake and biodistribution studies showed that FMs preferentially accumulate in human pDCs and monocytes in vitro and in tissues frequently damaged in SLE patients (i.e., kidneys), while sparing the eye in vivo. These results showed that nanocarrier morphology enables drug delivery, and CQ-FMs may be equally effective and more targeted than soluble CQ at inhibiting SLE-relevant pathways.


Asunto(s)
Interferón Tipo I , Cloroquina/farmacología , Células Dendríticas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/metabolismo , Distribución Tisular , Receptor Toll-Like 9
13.
Adv Ther (Weinh) ; 4(4)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34485684

RESUMEN

Upon exposure to blood, a corona of proteins adsorbs to nanocarrier surfaces to confer a biological identity that interfaces with the immune system. While the nanocarrier surface chemistry has long been the focus of protein corona formation, the influence of nanostructure has remained unclear despite established influences on biodistribution, clearance, and inflammation. Here, combinations of nanocarrier morphology and surface chemistry are engineered to i) achieve compositionally distinct protein coatings in human blood and ii) control protein-mediated interactions with the immune system. A library of nine PEGylated nanocarriers differing in their combination of morphology (spheres, vesicles, and cylinders) and surface chemistry (methoxy, hydroxyl, and phosphate) are synthesized to represent properties of therapeutic and biomimetic delivery vehicles. Analysis by quantitative label-free proteomic techniques reveal that specific surface chemistry and morphology combinations adsorb unique protein signatures from human blood, resulting in differential complement activation and elicitation of distinct proinflammatory cytokine responses. Furthermore, nanocarrier morphology is shown to primarily influence uptake and clearance by human monocytes, macrophages, and dendritic cells. This comprehensive analysis provides mechanistic insights into rational design choices that impact the immunological identity of nanocarriers in human blood, which can be leveraged to engineer drug delivery vehicles for precision medicine and immunotherapy.

14.
Nanoscale ; 13(26): 11349-11359, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160529

RESUMEN

Two major obstacles that limit the widespread usage of polymeric nanocarriers include the complexity of formulation methods and their stability during storage. To address both of these issues, here we present morphologically complex nanocarriers in a hydratable powder form, which bypasses the need for expensive, harsh, and/or time-consuming nanocarrier fabrication techniques. The powders are composed of carbohydrates and self-assembling polymer amphiphiles having a low glass transition temperature. Hydration requires less than one minute and only involves the addition of aqueous media (water or saline) to rapidly obtain self-assembled micelles, worm-like micelles (i.e. filomicelles), or polymersomes from poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) polymers. The formulated powders are highly stable, achieving hydration into monodisperse nanocarriers following >6 months of storage. Diverse drug cargoes were efficiently encapsulated during hydration, including hydrophobic small molecules for micellar morphologies, as well as individual and concurrent loading of both hydrophobic and hydrophilic molecules for vesicular morphologies. Hydrated polymersomes are shown to load hydrophilic biological macromolecules, and encapsulated enzymes retain bioactivity. Furthermore, we demonstrate that inclusion of lipid-anchored ligands in powder form permits the surface-display of targeting ligands and enhances target cell uptake, thereby extending this technology to targeted drug delivery applications. Our powder-based formulation strategy was extendable to commercially available polymer amphiphiles, including PEG-b-polystyrene and PEG-b-polycaprolactone. The formulated nanotechnologies described herein are highly modular, require minimal preparation, and remain stable in ambient long-term storage (bypassing cold chain requirements), which will enable their use in medicine (human and veterinary), research, and commercial applications from cosmetics to agriculture.


Asunto(s)
Polietilenglicoles , Agua , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Polímeros , Polvos
15.
Nanoscale Horiz ; 6(5): 393-400, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33884386

RESUMEN

A significant barrier to the application of nanoparticles for precision medicine is the mononuclear phagocyte system (MPS), a diverse population of phagocytic cells primarily located within the liver, spleen and lymph nodes. The majority of nanoparticles are indiscriminately cleared by the MPS via macropinocytosis before reaching their intended targets, resulting in side effects and decreased efficacy. Here, we demonstrate that the biodistribution and desired tissue accumulation of targeted nanoparticles can be significantly enhanced by co-injection with polymeric micelles containing the actin depolymerizing agent latrunculin A. These macropinocytosis inhibitory nanoparticles (MiNP) were found to selectively inhibit non-specific uptake of a second "effector" nanoparticle in vitro without impeding receptor-mediated endocytosis. In tumor bearing mice, co-injection with MiNP in a single multi-nanoparticle formulation significantly increased the accumulation of folate-receptor targeted nanoparticles within tumors. Furthermore, subcutaneous co-administration with MiNP allowed effector nanoparticles to achieve serum levels that rivaled a standard intravenous injection. This effect was only observed if the effector nanoparticles were injected within 24 h following MiNP administration, indicating a temporary avoidance of MPS cells. Co-injection with MiNP therefore allows reversible evasion of the MPS for targeted nanoparticles and presents a previously unexplored method of modulating and improving nanoparticle biodistribution following subcutaneous administration.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Inyecciones Subcutáneas , Ratones , Sistema Mononuclear Fagocítico , Neoplasias/tratamiento farmacológico , Distribución Tisular
16.
Nat Commun ; 12(1): 648, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510170

RESUMEN

Controlling nanocarrier interactions with the immune system requires a thorough understanding of the surface properties that modulate protein adsorption in biological fluids, since the resulting protein corona redefines cellular interactions with nanocarrier surfaces. Albumin is initially one of the dominant proteins to adsorb to nanocarrier surfaces, a process that is considered benign or beneficial by minimizing opsonization or inflammation. Here, we demonstrate the surface chemistry of a model nanocarrier can be engineered to stabilize or denature the three-dimensional conformation of adsorbed albumin, which respectively promotes evasion or non-specific clearance in vivo. Interestingly, certain common chemistries that have long been considered to convey stealth properties denature albumin to promote nanocarrier recognition by macrophage class A1 scavenger receptors, providing a means for their eventual removal from systemic circulation. We establish that the surface chemistry of nanocarriers can be specified to modulate adsorbed albumin structure and thereby tune clearance by macrophage scavenger receptors.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas/química , Pliegue de Proteína , Albúmina Sérica Bovina/química , Adsorción , Animales , Bovinos , Microscopía por Crioelectrón , Humanos , Cinética , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Células RAW 264.7 , Receptores Depuradores/química , Receptores Depuradores/metabolismo , Albúmina Sérica Bovina/metabolismo , Propiedades de Superficie
17.
Pediatr Res ; 89(6): 1364-1372, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32927471

RESUMEN

Infection is the predominant cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, very young infants fail to respond optimally to most vaccines currently in use, especially neonates. In 2005, Stanley Plotkin proposed that new delivery systems would spur a new revolution in pediatric vaccinology, just as attenuation, inactivation, cell culture of viruses, genetic engineering, and adjuvantation had done in preceding decades. Recent advances in the field of immunoengineering, which is evolving alongside vaccinology, have begun to increasingly influence vaccine formulation design. Historically, the particulate nature of materials used in many vaccine formulations was empiric, often because of the need to stabilize antigens or reduce endotoxin levels. However, present vaccine delivery systems are rationally engineered to mimic the size, shape, and surface chemistry of pathogens, and are therefore often referred to as "pathogen-like particles". More than a decade from his original assessment, we re-assess Plotkin's prediction. In addition, we highlight how immunoengineering and advanced delivery systems may be uniquely capable of enhancing vaccine responses in vulnerable populations, such as infants. IMPACT: Immunoengineering and advanced delivery systems are leading to new developments in pediatric vaccinology. Summarizes delivery systems currently in use and development, and prospects for the future. Broad overview of immunoengineering's impact on vaccinology, catering to Pediatric Clinicians and Immunologists.


Asunto(s)
Ingeniería Genética , Vacunación/métodos , Vacunas/administración & dosificación , Niño , Humanos , Vacunas/inmunología
18.
Carbohydr Polym ; 251: 117017, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33142578

RESUMEN

The synthesis and specific surface functionalization of antimicrobial silver nanoparticles (AgNPs) and their incorporation into an alginate hydrogel is described. Divalent cation-mediated ionic crosslinking was used to disperse the AgNPs throughout the gel, made possible by -COO- cross-linking sites provided by the surface-enhanced nanoparticles, inspired by the classic egg-box model crosslinking of calcium alginate. An AgNP concentration, 10-20 µg g-1 increased hygrogel elasticity, viscosity, and shear resistance by 45, 30, and 31% respectively. Cryo-TEM revealed evenly distributed AgNP assemblies of discrete AgNPs throughout the gel matrices. FTIR-ATR indicated AgNPs were involved in alginate carboxylate-Ca2+-COO-AgNP crossbridging, which was not achieved through mixing of AgNPs into preformed gels. Live/dead fluorometric assays determined a minimal bactericidal concentration of 25 µg g-1 Ag for 6 microorganisms. Anti-biofilm assays showed species-dependent cell death of 44 -61%, with limited silver ion release of 0.41% and 1.1% after 7 days for Gram positive and negative bacteria, respectively.


Asunto(s)
Alginatos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Hidrogeles/química , Plata/farmacología , Nanopartículas del Metal/química , Nanogeles/química
19.
ACS Appl Mater Interfaces ; 12(50): 55584-55595, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33259182

RESUMEN

Magnetic nanostructures (MNS) have a wide range of biological applications due to their biocompatibility, superparamagnetic properties, and customizable composition that includes iron oxide (Fe3O4), Zn2+, and Mn2+. However, several challenges to the biomedical usage of MNS must still be addressed, such as formulation stability, inability to encapsulate therapeutic payloads, and variable clearance rates in vivo. Here, we enhance the utility of MNS during controlled delivery applications via encapsulation within polymeric bicontinuous nanospheres (BCNs) composed of poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-b-PPS) copolymers. PEG-b-PPS BCNs have demonstrated versatile encapsulation and delivery capabilities for both hydrophilic and hydrophobic payloads due to their unique and highly organized cubic phase nanoarchitecture. MNS-embedded BCNs (MBCNs) were thus coloaded with physicochemically diverse molecular payloads using the technique of flash nanoprecipitation and characterized in terms of their structure and in vivo biodistribution following intravenous administration. Retention of the internal aqueous channels and cubic architecture of MBCNs were verified using cryogenic transmission electron microscopy and small-angle X-ray scattering, respectively. MBCNs demonstrated improvement in magnetic resonance imaging (MRI) contrast enhancement (r2 relaxivity) as compared to free MNS, which in combination with scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy evidenced the clustering and continued access to water of MNS following encapsulation. Furthermore, MBCNs were found to be noncytotoxic and able to deliver their hydrophilic and hydrophobic small-molecule payloads both in vitro and in vivo. Finally, the oxidation sensitivity of the hydrophobic PPS block allowed MBCNs to undergo a unique, triggerable transition in morphology into MNS-bearing micellar nanocarriers. In summary, MBCNs are an attractive platform for the delivery of molecular and nanoscale payloads for diverse on-demand and sustained drug delivery applications.


Asunto(s)
Nanopartículas de Magnetita/química , Nanosferas/química , Animales , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Femenino , Óxido Ferrosoférrico/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/química , Hígado/metabolismo , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Nanosferas/metabolismo , Nanosferas/toxicidad , Oxidación-Reducción , Polietilenglicoles/química , Sulfuros/química , Distribución Tisular
20.
Emerg Top Life Sci ; 4(3): 319-330, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33231265

RESUMEN

Implants have long been used in the field of drug delivery as controlled release vehicles and are now being investigated as single-shot vaccine technologies. Implants have shown great promise, minimizing the need for multiple immunizations while stimulating potent immune responses with reduced doses of vaccine. Synchronous release of vaccine components from implants over an appropriate period of time is important in order to avoid issues including immune tolerance, sequestration or deletion. Traditionally, implants require surgical implantation and removal, which can be a barrier to their widespread use. Degradable and in situ implants are now being developed that can be administered using minimally invasive subcutaneous or intramuscular injection techniques. Injectable hydrogels remain the most commonly studied approach for sustained vaccine delivery due to their ease of administration and tunable degradation properties. Despite exciting advancements in the field of vaccine implants, few technologies have progressed to clinical trials. To increase the likelihood of clinical translation of vaccine implants, strategic testing of disease-relevant antigens in appropriate species is essential. In this review, the significance of vaccine implants and the different types of implants being developed to deliver vaccines are discussed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Implantes de Medicamentos , Vacunas , Antígenos , Hidrogeles , Inmunización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...